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Abstract

Parameters of hydrologic models often are not exactly known and therefore have to be determined by calibration. A manual
calibration depends on the subjective assessment of the modeler and can be very time-consuming though. Methods of automatic
calibration can improve these shortcomings. Yet, the high number of parameters in distributed models makes special demands
on the optimization. In this paper a strategy of imposing constraints on the parameters to limit the number of independently
calibrated values is outlined. Subsequently, an automatic calibration of the version SWAT-G of the model SWAT (Soil and
Water Assessment Tool) with a stochastic global optimization algorithm, the Shuffled Complex Evolution algorithm, is
presented for a mesoscale catchment. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A complex hydrologic model is generally charac-
terized by a multitude of parameters. Due to spatial
variability, measurement error, etc., the values of
many of these parameters will not be exactly
known. Therefore, in most cases a model calibration
will be necessary.

The success of a manual calibration essentially
depends on the experience of the modeler and their
knowledge of the basic approaches and interactions in
the model. A manual calibration therefore always is
subjective to some extent. Moreover, it can be
extremely time consuming.

Methods of automatic calibration can improve
these shortcomings. Following, results from an auto-
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matic calibration of a modified version of the
watershed model SWAT (Soil and Water Assessment
Tool, Arnold et al., 1998) with a stochastic global
optimization algorithm, the Shuffled Complex
Evolution (SCE) algorithm developed by Duan et al.
(1992), are presented. The SCE algorithm has been
applied to different physically based hydrologic
models (Duan et al., 1992; Sorooshian et al., 1993;
Luce and Cundy, 1994; Gan and Biftu, 1996; Kuczera,
1997) and proved to be an efficient instrument for the
automatic optimization.

SWAT is an example for distributed models
relying on a physically based description of the
runoff generation and the effects of different land
covers. Models of this type are needed for the
assessment of effects of land use changes on the
water cycle and the transport of water constitu-
ents. Compared to the models used in the above
mentioned studies, a special feature of distributed
models is the greater number of parameters which
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potentially need to be calibrated. A catchment
modeled with SWAT will be subdivided into
spatial subunits (subbasins and hydrotopes or
hydrologic response units, respectively) which
are explicitly parametrized with respect to the
land cover, the soil, etc.. Thus, the number of
parameter values characterizing the catchment
will be very high.Though many inputs into
SWAT are based on readily available information,
some uncertainty in these inputs is inevitable.
Therefore, in most SWAT modeling studies, inputs
are allowed to vary within a realistic uncertainty
range to calibrate output to monthly or annual
values (Arnold and Allen, 1996).

2. The hydrologic model

The hydrologic model used in this study is a
modified version of the Soil and Water Assessment
Tool (SWAT; Arnold et al.,, 1998). SWAT was
developed to predict the impact of land management
practices on water, sediment and agricultural chemi-
cal yields in large complex watersheds with varying
soils, land use and management conditions over long
periods of time. To satisfy this objective, the model
(a) is physically based, (b) uses readily available
inputs, (c) is computationally efficient, and (d) is
continuous time operating on a daily time step.
Major model components include: weather, hydro-
logy, soil temperature, plant growth, nutrients,
pesticides, and land management. In the present
study only hydrologic processes are considered.

In each of the spatial subunits of a watershed
model, the water balance is represented by four
storage volumes: snow, soil profile, shallow aquifer,
and deep aquifer (Fig. 1). The soil profile can be
subdivided into multiple layers. Soil water processes
include infiltration, evaporation, plant uptake, lateral
flow, and percolation to lower layers. Percolation
from the bottom of the soil profile recharges the
shallow aquifer. A recession constant is used to lag
flow from the aquifer to the stream. Other shallow
aquifer components include evaporation, pumping
withdrawals, and seepage to the deep aquifer.

The hydrologic components of the model have been
validated for numerous watersheds (Arnold and Allen,
1996) and a comprehensive validation of streamflow

was performed for the entire conterminous U.S.
(Arnold et al., 1999). The application of SWAT to a
low mountain range catchment in central Germany
(see below) required some changes in the model
though. The considered catchment is characterized
by steep slopes and shallow soils over hard rock
aquifers. Therefore, the contribution of groundwater
(baseflow) to the streamflow is relatively small,
whereas much near-surface lateral flow (interflow) is
produced. To take account of this special situation the
calculation of the percolation and the interflow had to
be revised. The new model version was named
SWAT-G (Eckhardt et al., 2001).

3. The optimization algorithm

The SCE algorithm (Duan et al., 1992) belongs to
the family of genetic algorithms. In its first step a
sample of points is distributed stochastically over
the feasible part of the parameter space which is
confined by the lower and upper bounds of the para-
meter values. Every point is thought to represent a
member of a population of living beings. Each indi-
vidual is characterized by its genetic information, a
complete set of parameter values. By changing the
genetic information—the parameter values—the
population develops towards an optimum of fitness,
that is an optimum of the objective function desribing
the correspondence between a model output variable
and measured values. To this purpose the initial
sample is partitioned into several sub-samples,
so-called complexes. In every complex varying
combinations of points produce offspring using the
downhill simplex procedure of Nelder and Mead
(1965). The probability of an individual to take part
in the reproduction is proportional to its fitness. ‘Old’
points of lower fitness are replaced by the offspring.
The proceeding towards a global optimum is
supported by (a) the possibility that new points are
spontaneously created in the feasible parameter
space (‘mutation’) and (b) a regular recombination
of the points into new complexes (‘shuffling’).

The algorithm was programmed by Qingyun Duan
at the Department of Hydrology & Water Resources
of the University of Arizona who kindly made its
source code available.

Because a catchment modeled with SWAT will be



K. Eckhardt, J.G. Arnold / Journal of Hydrology 251 (2001) 103—109

Irrigation I

| Precipitation
| Rain | | Snow |
Y
< Snow melt
¥ M
Infiltration Surface Runoff
| Transmission
Losses

o

Soil Evap.

Plant Uptake
and
Transpiration

>

Lateral Flow

Pond/Reservoir
‘Water Balance

P/R Evap.

Irrigation

P/R Outflow

Y V¥V ¥V V¥

P/R Seepage

Streamflow

pr{ Irrigation
Diversi

B Transmission
Losses

Route to
> next
Reach or

Reservoir

v

Percolation

Y-

.
> Shallow Aquifer \

A 7 7 ¥ ¥
Irrigation Revap Seepage Retarn
Flow

| Irrigation |

> Deep Aquifer

Fig. 1. Schematic of pathways available for water.

105



106 K. Eckhardt, J.G. Arnold / Journal of Hydrology 251 (2001) 103—109

subdivided into spatial subunits (subbasins, hydro-
topes, HRUs) which are explicitly parametrized, the
number of parameter values characterizing the
catchment will be very high. It is neither possible
nor meaningful to independently optimize all these
parameter values. Therefore, the programs for the
automatic calibration have been complemented by
an additional module enabling the user to formulate
constraints and interdependencies of the model para-
meters. It is thereby possible

1. to optimize only a few selected parameter values
while others simultaneously are adjusted in
previously defined ratios

2. to guarantee that the magnitude relation (if it is
known) of two parameters respectively which are
varied in overlapping intervals is preserved during
the optimization.

With the first of these two options a spatial pattern
of a parameter (hydraulic conductivity of the soil for
instance) can be defined which during the calibration
is no more spatially differentiated but only modified as
a whole. The number of free parameters which need to
be adjusted thus can be considerably reduced.

The application and the benefits of these features
are demonstrated below.

4. The catchment

A model for the Dietzholze catchment in central
Germany has been etablished. The Dietzhdlze is a
small river in a low mountain range in the federal
state of Hesse. The area of its catchment amounts to
81 km® The elevation ranges from 250 to 685 m
above sea level, the average hillslope is 20%. Based
on a digital elevation model the catchment was subdi-
vided into five subbasins (Fig. 2).

By superimposing the information on land cover
and soils altogether 35 hydrotopes or HRUs respec-
tively were formed which represent the smallest
spatial units assumed to be homogeneous in their
hydrologic behavior.

Land use information was derived from Landsat
TMS satellite images (Nohles, 2000). Five different
land use categories are distinguished: coniferous
wood (40% of the area), deciduous wood (21%),

Fig. 2. Digital elevation model and subbasin boundaries for the
Dietzholze catchment.

pasture (17%), range and farm land (13%), and settle-
ment (9%). The soil is dominated by shallow cambi-
sols over schist and greywacke (HLUG, 2000).

5. Results and discussion of the automatic
calibration

The model was calibrated against 3 hydrologic
years (1991-1993) of daily measured runoff at the
catchment outlet. A previous sensitivity analysis
showed which parameters should be given priority
in the optimization. Concerning land use and soils
these are the curve number (USDA-SCS, 1972), the
maximum potential interception, the maximum leaf
area index, the thickness of the hard rock layer repre-
senting the schist and greywacke underneath the
shallow cambisols, the density, the available water
capacity and the saturated conductivity of the soil.
Furthermore, parameters determining the delay of
the surface runoff, the groundwater recharge and the
baseflow recession were optimized.

To consider only sensitive parameters is a first step
to reducing the number of calibration parameters and
thus to keeping the runtime of the optimization in
reasonable bounds. A second step is to optimize
these parameters only for a few selected crops and
soils or soil layers respectively. The corresponding
values for other crops and soils or soil layers then
can be linked to these calibration parameters in
previously defined ratios as mentioned above.

As an example consider the saturated hydraulic
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Table 1
Explicitly calibrated model parameters

Parameter Lower bound Upper bound Optimized value
Snow melt rate (mm/d/°C) 1.00 3.00 1.06
Surface runoff lag time (d) 0.10 1.00 0.35
Curve number for coniferous wood 50.0 60.0 59.9
Maximum potential interception for coniferous wood (mm) 3.00 6.00 4.29
Manning’s ‘n’ value for overland flow m ") 0.20 0.50 0.38
Groundwater recession coefficient (d ") 0.030 0.060 0.056
Delay of the groundwater recharge (d) 1.0 20.0 1.0
Deep aquifer percolation fraction 0.00 0.80 0.52
Thickness of the rocky base of soil n0.202* (mm) 1000 5000 1920
Thickness of the rocky base of soil n0.2458° (mm) 3000 10000 6630
Density, soil no. 2458, third layer (g/cm®) 1.50 1.60 1.50
Density of the bedrock (g/cm®) 2.51 2.64 2.64
Available water capacity, soil n0.2458", first layer (mm/mm) 0.16 0.20 0.16
Saturated conductivity, soil n0.202% third layer (mm/h) 1.0 45.0 44.8
Saturated conductivity, soil n0.2458°, third layer (mm/h) 10.0 85.0 85.0
Anisotropy factor®, soil n0.2458", third layer 2.00 8.00 7.96
Maximum leaf area index for coniferous wood 4.0 14.0 8.4
Maximum leaf area index for pasture 1.5 5.5 1.8

* Shallow cambisol on the lower slope.
® Shallow cambisol on the upper slope.

¢ Only available in the SWAT version SWAT-G (Eckhardt et al., 2001).

conductivity. The model contains 10 different soils.
Forty-four conductivity values are assigned to the
layers of these soils, too many to calibrate them
individually. Therefore, the calibration of the hydrau-
lic conductivity was confined to one layer respectively
of two soils representing the shallow cambisols on the
upper and the lower slope. Together, they cover more
than 66% of the catchment area. All other values of
the saturated conductivity were adjusted in fixed
ratios to these calibration parameter values. The ratios
were derived from empirical rules considering the soil
type and its bulk density (KA3, 1982).

In this way, 18 parameter values remained to be
optimized explicitly while 143 others were simulta-
neously adjusted in fixed ratios. Table 1 shows the
explicitly calibrated model parameters, their upper
and lower bounds of variation and the optimization
results. The ranges were choosen from tables found in
literature (e.g. McCuen, 1998, for roughness
coefficients and curve numbers). Furthermore, their
definition was influenced by experiences made in a
manual calibration of a similar catchment in the
same region.

Using the mean square error as objective function,

nearly 18,000 model runs had to be executed automa-
tically until the optimization was terminated because
no further amelioration could be obtained. Some of
the optimized parameters equal the defined upper or
lower bounds. It seems to be a problem to simulate the
quick catchment response to precipitation. The
optimized values of the curve number, the density of
the soil, its available water capacity, hydraulic
conductivity and anisotropy all favor a high contribu-
tion of direct runoff (surface runoff and interflow) to
the streamflow.

The focus on the direct runoff is supported by the
choice of the objective function. Using the mean
square error the minimization of large differences
between the modeled and the observed runoff gains
a disproportionately high priority to the minimization
of small differences. Yet, the largest differences are
found underneath streamflow peaks where the fast
runoff components dominate. Further, the high value
of the curve number could reflect that the soils were
not correctly attributed to the SCS soil groups. To
define the curve number range it was assumed that
the soils belong to the hydrologic soil group B.
Perhaps soil group C would have been a more
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Fig. 3. Measured and calculated daily streamflow after the auto-
matic model calibration.

appropriate choice. To admit a higher curve number in
turn would have reduced the need for extreme values
of the other parameters. Last but not least, difficulties
to simulate the fast hydrologic catchment response
will partially be caused by the relatively coarse spatial
resolution of the model. Thereby, higher importance
is attached to those land covers and soils already
dominating the base data. In case of the Dietzholze
catchment these are forest and soils on the upper slope
and hilltops, the land cover and the soils with the
slowest hydrologic response.

In Figs. 3 and 4, the daily and monthly streamflow
calculated by the automatically calibrated model is
compared to the observed runoff. Mean values of
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Fig. 4. Measured and calculated monthly streamflow after the auto-
matic model calibration.

Table 2
Results of the calibration based on the daily streamflow

Observed Calculated
Mean annual streamflow (mm/d) 1.18 1.13
Standard deviation (mm/d) 1.94 1.51
Mean winter streamflow (mm/d) 2.00 1.91
Mean summer streamflow (mm/d) 0.38 0.36
Model efficiency” 0.70
Correlation 0.84

* Nash and Sutcliffe (1970).

the streamflow, the model efficiency (Nash and
Sutcliffe, 1970) and the correlation of the
measured and the calculated streamflow are listed
in Table 2.

The mean annual runoff is slightly underestimated
by 4%. A model efficiency (Nash and Sutcliffe, 1970)
of 0.70 and a correlation of 0.84 are obtained for the
daily values though. The model efficiency for the 36
monthly means of the considered period amounts to
0.91. A model validation using the daily streamflow in
the 3 following hydrologic years (1994-1996)
confirms the calibration result (efficiency: 0.73, corre-
lation: 0.86).

6. Conclusions

First it has to be assessed how good the obtained
model efficiencies are. Efficiencies of different catch-
ment models are not directly comparable because they
are influenced by the variability of the respective
measurements (the efficiency being 1 minus the
variance of the residuals divided by the variance of
the measured values). Results of previously published
investigations can give an impression of the approx-
imate level the efficiency should reach though.

Krysanova et al. (1998) presented a model partially
derived from SWAT called SWIM. Testing it for five
mesoscale watersheds in Germany over 3- to 5-year
periods of daily runoff values they obtained model
efficiencies ranging from 0.68 to 0.85. Using
SWAT, King and Arnold (1998) calibrated a model
of a mesoscale watershed in Mississippi over one year
of daily streamflow. The resulting efficiency was 0.78.
So it seems that an acceptable calibration level has
been reached by means of the automatic opimization
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comparable to that of similar studies and probably not
far from its potential optimum.

Finally, the expenditure of work has to be assessed.
A manual calibration is more or less a process of trial
and error. In general, parameter values have to be
changed and the model has to be rerun many times
by the user. On the other hand, the automatic calibra-
tion only requires two input files to be filled out once.
These files contain the information controling the
program, the measured values the model output is to
compare with and the declarations of parameter
constraints and interdependencies. In our example,
on an IBM RS/6000 workstation, the optimization
procedure took about 6 days. So some patience is
required for certain but the modeler is free for other
work in the meantime.

The results presented in this study show that also
distributed hydrologic models as complex as SWAT
can successfully be automatically calibrated.
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